Electromagnetic Properties of Materials خواص الموادالكهرومغناطيسية




Electromagnetic Properties of Materials
All  materials  can  be  classified  according  to  their  electrical  properties  into  three 
types        
conductors, semiconductors, and insulators (or dielectrics).  In terms of the crude atomic
model  of  an  atom  consisting  of  a  positively  charged  nucleus  with  orbiting  electrons,  the electrons  in  the  outermost  shells  of  the  atoms  of  conductors  are  very  loosely  held  and  migrate easily from one atom to another.  Most metals belong to this group
.  The electrons  in the atoms of insulators or dielectrics, however, are confined to their orbits; they cannot be
liberated in normal circumstances, even by the application of an external electric field.  The
electrical  properties  of  semiconductors  fall  between  those  of  conductors  and  insulators  in  that they possess a relatively small number of freely movable charges.
In  terms  of  the  band  theory  of  solids  we  find  that  there  are  allowed  energy  bands  for electrons,  each  band  consisting  of  many  closely  spaced,  discrete  energy  states.   
Between
these energy bands there may be forbidden regions or gaps where no electrons of the solid's
atom can reside.  Conductors have an upper energy band partially filled with electrons or an
upper pair of overlapping bands that are partially filled so that the electrons in these bands can move from one to another with only a small change in energy.  Insulators or dielectrics
are materials with a completely filled upper band, so conduction could not normally occur
because of the existence of a large energy gap to the next higher band.  If the energy gap of
the forbidden region is relatively small, small amounts of external energy may be sufficient
to  excite  the  electrons  in  the  filled  upper  band  to  jump  into  the  next  band,  causing
conduction.  Such materials are semiconductors


Conductors in Static Field

Assume  for  the  present  that  some  positive  (or  negative)  charges  are  introduced  in  the
interior of a conductor.  An electric field will be set up in the conductor, the field exerting a
force on the charges and making them move away from one another.  This movement will
continue  until  all  the  charges  reach  the  conductor  surface  and  redistribute  themselves  in such  a  way  that  both  the  charge  and  the  field  inside  vanish.    Hence,  inside  a  conductor
 (under  static  conditions),  the  volume  charge  density  in  Cm
−3
rr  =  0.    When  there  is  no
charge in the interior of a conductor (r=0), E must be zero.
The  charge  distribution  on  the  surface  of  a  conductor  depends  on  the  shape  of  the
surface.    Obviously,  the  charges  would  not  be  in  a  state  of  equilibrium  if  there  were  a
tangential  component  of  the  electric  field  intensity  that  produces  a  tangential  force  and
moves the charges.  Therefore, under static conditions the E field on a conductor surface
is  everywhere  normal  to  the  surface.    In  other  words,  the  surface  of  a  conductor  is  an
equipotential surface under static conditions.  As a matter of fact, since E = 0 everywhere
inside a conductor, the whole conductor has the same electrostatic potential.  A finite time is
required  for  the  charges  to  redistribute  on  a  conductor  surface  and  reach  the  equilibrium
state.  This time depends on the conductivity of the material.  For a good conductor such as
copper this time is of the order of 10
−19
 (s), a very brief transient.
Conductors Carrying Steady Electric Currents
Conduction  currents  in  conductors  and  semiconductors  are  caused  by  drift  motion  of
conduction  electrons  and/or  holes.    In  their  normal  state  the  atoms  consist  of  positively
charged  nuclei  surrounded  by  electrons  in  a  shell-like  arrangement.    The  electrons  in  the
inner shells are tightly bound to the nuclei and are not free to move away.  The electrons in may  wander  from  one  atom  to  another  in  a  random  manner.    The  atoms,  on  the  average,
remain electrically neutral, and there is no net drift motion of electrons. When an external
electric field is applied on a conductor, an organized motion of the conduction electrons will
result, producing an electric current.  The average drift velocity of the electrons is very low
(on the order of 10
-4
 or 10
-3
 m/s) even for very good conductors because they collide with the
atoms in the course of their motion, dissipating part of their kinetic energy as heat.  Even
with  the  drift  motion  of  conduction  electrons,  a  conductor  remains  electrically  neutral.
Electric forces prevent excess electrons from accumulating at any point in a conductor.
Consider  the  steady  motion  of  one  kind  of  charge  carriers,  each  of  charge  q  (which  is
negative for electrons), across an element of surface Δs with a velocity u.  If N is the number
of charge carriers per unit volume, then in time Δt each charge carrier moves a distance u Δt,
and the amount of charge carrier passing through the surface Δs is
Δ Δ Δ Q    Nq s  t
n =         • u   a (C)
Since current is the time rate of change of charge, we have
Δ
Δ
Δ
Δ Δ I
Q
t
Nq s
n =        =         •          =    • u   a          J      s        (A)
where  J         u = Nq     (A/m
2
is  the  volume  current  density,  or  simply  current  density  and
Δ s=a n Δs.
It  can  be  justified  analytically  that  for  most  conducting  materials  the  average  drift
velocity is directly proportional to the applied external electric field strength.  For metalic
conductors we write
u          E = −m
e
(m/s)
where m e  is the electron mobility measured in (m
2
/Vs).  The electron mobility for copper is
3.2×10
-3
  (m
2
/Vs).  It  is  1.4×10
-4
  (m
2
/Vs)  for  aluminum  and  5.2×10
-3
  (m
2
/Vs)  for  silver.
Therefore, we obtain the point form of Ohm's law:
J E      E = − =        r m        s
e    e
(A/m
2
)
where  r e =−Ne  is  the  charge  density  of  the  drifting  electrons,  and  s=−r e m e   a  macroscopic
constitutive parameter of the medium known as conductivity.  The SI unit for conductivity
is ampere per volt-meter (A/Vm) or siemens per meter (S/m). The reciprocal of conductivity
is known as resistivity in ohm-meters (Ωm).
In the physical world we have an abundance of "good conductors" such as silver, copper,
gold, and aluminum, whose conductivities are of the order of 10
7
 (S/m).  There are super-
conducting materials whose conductivities are essentially infinite (in excess of 10
20
 S/m) at
the outermost shells of a conductor atom do not completely fill the shells; they are valence or
conduction electrons and are only very loosely bound to the nuclei.  These latter electrons cryogenic  temperatures.    They  are  called  superconductors.  Because  of  the  requirement  of
extremely  low  temperatures,  they  have  not  found  much  practical  use.    However,  this
situation  is  expected  to  change  in  the  near  future,  since  scientists  have  recently  found
temperatures (20-30 degrees above 77 K boiling point of nitrogen, raising the possibility of
using  inexpensive  liquid  nitrogen  as  coolant).    At  the  present  time  the  brittleness  of  the
ceramic  materials  and  limitations  on  usable  current  density  and  magnetic  field  strength
remain  obstacles  to  industrial  applications.    Room-temperature  superconductivity  is  still  a
dream.
For  semiconductors,  conductivity  depends  on  the  concentration  and  mobility  of  both
electrons and holes:
s       r m     r m = −        + e    e h     h
where the subscript h denotes hole.
Resistance Calculation
Consider a piece of homogeneous material of conductivity s, length l, and uniform cross
section  A,  as  shown  below.  Within  the  conductor,  J=sE,  where  both  J  and  E  are  in  the
direction of current flow.  The potential difference or voltage between terminals 1 and 2 is
V       El
12 =
or  E    V     l        = 12
and the total current is
I JA      EA
A
=      •       =      = ∫ J   dA s
=
sA
l
V
12
or I
V
R
= 12
where     R
l
A
=
s
is  the  resistance  between  two  terminals.    The  unit  for  resistance  is  Ohms  (Ω).    The
reciprocal of resistance is defined as conductance  or  G=1/R.    The  unit  for  conductance  is
siemens  (S)  or    (Ω -1
).    This  equation  can  be  applied  directly  to  uniform  cross  sectioned
bodies operating at low frequencies..









What is a dielectric?
The dielectric constant of a material
measures how the material responds
to an applied external electric field.
If the atoms in the material have a
dipole moment they will tend to orient
themselves in the applied field so the
net field in the material is reduced.
Internal  electric  field  reduced  from
the  vacuum  value  by  the  dielectric
constant ǫ r .
Dielectric are non-metallic substances (gas, liquid, or solid).
Many practical applications like storing energy in capacitors,
piezoelectric for making measurements, accumulating charge in an
accelerator